Jonas, H. J., Schall, P., & Bolhuis, P. G. (2024). Activity affects the stability, deformation and breakage dynamics of colloidal architectures. Soft Matter, 20(9), 2162-2177. https://doi.org/10.1039/d3sm01255g[details]
de Gaay Fortman, N., Kolkowski, R., Pal, D., Rodriguez, S. R. K., Schall, P., & Koenderink, A. F. (2024). Spontaneous symmetry breaking in plasmon lattice lasers. Science Advances, 10(27), Article adn2723. https://doi.org/10.1126/sciadv.adn2723
2023
Marino, E., Jiang, Z., Kodger, T. E., Murray, C. B., & Schall, P. (2023). Controlled Assembly of CdSe Nanoplatelet Thin Films and Nanowires. Langmuir, 39(36), 12533-12540. https://doi.org/10.1021/acs.langmuir.3c00933[details]
Swinkels, P. J. M., Gong, Z., Sacanna, S., Noya, E. G., & Schall, P. (2023). Phases of surface-confined trivalent colloidal particles. Soft Matter, 19(19), 3414-3422. https://doi.org/10.1039/d2sm01237e[details]
Swinkels, P. J. M., Gong, Z., Sacanna, S., Noya, E. G., & Schall, P. (2023). Visualizing defect dynamics by assembling the colloidal graphene lattice. Nature Communications, 14, Article 1524. https://doi.org/10.1038/s41467-023-37222-4[details]
van der Laan, M., Heemskerk, E., Kienhuis, F., Diepeveen, N., Poonia, D., Kinge, S., Dang, M. T., Dinh, V. A., Siebbeles, L. D. A., Isaeva, A., van de Groep, J., & Schall, P. (2023). Stacking-Order-Dependent Excitonic Properties Reveal Interlayer Interactions in Bulk ReS2. ACS Photonics, 10(9), 3115-3123. https://doi.org/10.1021/acsphotonics.3c00477[details]
Dang, M. T., Duy, N. V. A., Zaccone, A., Schall, P., & Dinh, V. A. (2022). Structural modification enhances the optoelectronic properties of defect blue phosphorene thin films. Journal of Physics Condensed Matter, 34(28), Article 285702. https://doi.org/10.1088/1361-648X/ac68be[details]
Dang, M. T., Gartner, L., Schall, P., & Lerner, E. (2022). Measuring the free energy of hard-sphere colloidal glasses. Journal of Physics D: Applied Physics, 55(16), Article 165304. https://doi.org/10.1088/1361-6463/ac4a97[details]
Goyal, A., Andrioti, E., Tang, Y., Zhao, Q., Zheng, K., Newell, K. D., & Schall, P. (2022). Mechanochemical synthesis of stable, quantum-confined CsPbBr3perovskite nanocrystals with blue-green emission and high PLQY. Journal of Physics: Materials, 5(2), Article 024005. https://doi.org/10.1088/2515-7639/ac618f[details]
Goyal, A., van der Laan, M., Troglia, A., Lin, M., Agarwal, H., van de Groep, J., Bliem, R., Paulusse, J. M. J., Schall, P., & Dohnalova, K. (2022). Microscopic Proof of Photoluminescence from Mechanochemically Synthesized 1-Octene-Capped Quantum-Confined Silicon Nanoparticles: Implications for Light-Emission Applications. ACS Omega, 7(28), 24881-24887. https://doi.org/10.1021/acsomega.2c03396[details]
Jonas, H. J., Schall, P., & Bolhuis, P. G. (2022). Extended Wertheim theory predicts the anomalous chain length distributions of divalent patchy particles under extreme confinement. Journal of Chemical Physics, 157(9), Article 094903. https://doi.org/10.1063/5.0098882[details]
Kennedy, C. L., Sayasilpi, D., Schall, P., & Meijer, J. M. (2022). Self-assembly of colloidal cube superstructures with critical Casimir attractions. Journal of Physics Condensed Matter, 34(21), Article 214005. https://doi.org/10.1088/1361-648X/ac5866[details]
Poonia, D., Singh, N., Schulpen, J. J. P. M., Van Der Laan, M., Maiti, S., Failla, M., Kinge, S., Bol, A. A., Schall, P., & Siebbeles, L. D. A. (2022). Effects of the Structure and Temperature on the Nature of Excitons in the Mo0.6W0.4S2Alloy. Journal of Physical Chemistry C, 126(4), 1931-1938. https://doi.org/10.1021/acs.jpcc.1c09806[details]
Schyck, S., Meijer, J.-M., Baldauf, L., Schall, P., Petukhov, A. V. & Rossi, L. (2022). Data for "Self-assembly of colloidal superballs under spherical confinement of a drying droplet". 4TU.ResearchData. https://doi.org/10.4121/19122308
Stuij, S. G., Biebricher, A., Gong, Z., Sacanna, S., Peterman, E., Heller, I., & Schall, P. (2022). Extreme mechanics of colloidal polymers under compression: Buckling, creep, and break-up. Physical Review Materials, 6(3), Article 035603. https://doi.org/10.1103/PhysRevMaterials.6.035603[details]
Tang, Y., Poonia, D., van der Laan, M., Timmerman, D., Kinge, S., Siebbeles, L. D. A., & Schall, P. (2022). Electronic Coupling of Highly Ordered Perovskite Nanocrystals in Supercrystals. ACS Applied Energy Materials, 5(5), 5415-5422. https://doi.org/10.1021/ACSAEM.1C03276[details]
Donaldson, J. G., Schall, P., & Rossi, L. (2021). Magnetic Coupling in Colloidal Clusters for Hierarchical Self-Assembly. ACS Nano, 15(3), 4989-4999. https://doi.org/10.1021/acsnano.0c09952[details]
Jonas, H. J., Stuij, S. G., Schall, P., & Bolhuis, P. G. (2021). A temperature-dependent critical Casimir patchy particle model benchmarked onto experiment. Journal of Chemical Physics, 155(3), Article 034902. https://doi.org/10.1063/5.0055012[details]
Marino, E., Vasilyev, O. A., Kluft, B. B., Stroink, M. J. B., Kondrat, S., & Schall, P. (2021). Controlled deposition of nanoparticles with critical Casimir forces. Nanoscale Horizons, 6(9), 751-758. https://doi.org/10.1039/d0nh00670j[details]
Rouwhorst, J., van Baalen, C., Velikov, K., Habibi, M., van der Linden, E., & Schall, P. (2021). Protein microparticles visualize the contact network and rigidity onset in the gelation of model proteins. npj Science of Food, 5, Article 32. https://doi.org/10.1038/s41538-021-00111-5[details]
Stuij, S. G., Jonas, H. J., Gong, Z., Sacanna, S., Kodger, T. E., Bolhuis, P. G., & Schall, P. (2021). Revealing viscoelastic bending relaxation dynamics of isolated semiflexible colloidal polymers. Soft Matter, 17(36), 8291-8299. https://doi.org/10.1039/d1sm00556a[details]
Swinkels, P. J. M., Stuij, S. G., Gong, Z., Jonas, H., Ruffino, N., van der Linden, B., Bolhuis, P. G., Sacanna, S., Woutersen, S., & Schall, P. (2021). Revealing pseudorotation and ring-opening reactions in colloidal organic molecules. Nature Communications, 12, Article 2810. https://doi.org/10.1038/s41467-021-23144-6[details]
Tang, Y., Gomez, L., van der Laan, M., Timmerman, D., Sebastian, V., Huang, C.-C., Gregorkiewicz, T., & Schall, P. (2021). Room temperature synthesis and characterization of novel lead-free double perovskite nanocrystals with a stable and broadband emission. Journal of Materials Chemistry C, 9(1), 158-163. https://doi.org/10.1039/d0tc04394j[details]
Van Der Laan, M., De Weerd, C., Poirier, L., Van De Water, O., Poonia, D., Gomez, L., Kinge, S., Siebbeles, L. D. A., Koenderink, A. F., Gregorkiewicz, T., & Schall, P. (2021). Photon Recycling in CsPbBr3 All-Inorganic Perovskite Nanocrystals. ACS Photonics, 8(11), 3201-3208. https://doi.org/10.1021/acsphotonics.1c00953[details]
Vasilyev, O. A., Marino, E., Kluft, B. B., Schall, P., & Kondrat, S. (2021). Debye vs. Casimir: Controlling the structure of charged nanoparticles deposited on a substrate. Nanoscale, 13(13), 6475-6488. https://doi.org/10.1039/d0nr09076j[details]
de Cagny, H., Rouwhorst, J. C., Arnaudov, L., Stoyanov, S., Blijdenstein, T. B. J., & Schall, P. (2021). Water migration through fat-based semi solid heterogeneous materials. Food Structure, 29, Article 100208. https://doi.org/10.1016/j.foostr.2021.100208[details]
Goyal, A., Demmenie, M., Huang, C-C., Schall, P., & Dohnalova, K. (2020). Photophysical properties of ball milled silicon nanostructures. Faraday Discussions, 222, 96-107. https://doi.org/10.1039/C9FD00105K[details]
Kumar, P., Korkolis, E., Benzi, R., Denisov, D., Niemeijer, A., Schall, P., Toschi, F., & Trampert, J. (2020). On interevent time distributions of avalanche dynamics. Scientific Reports, 10(1), Article 626. https://doi.org/10.1038/s41598-019-56764-6[details]
Kushwaha, V. S., Acar, S., Miedema, D. M., Denisov, D. V., Schall, P., & Peterman, E. J. G. (2020). The crowding dynamics of the motor protein kinesin-II. PLoS ONE, 15(2), Article e0228930. https://doi.org/10.1371/journal.pone.0228930[details]
Maiti, S., van der Laan, M., Poonia, D., Schall, P., Kinge, S., & Siebbeles, L. D. A. (2020). Emergence of New Materials for Exploiting Highly Efficient Carrier Multiplication in Photovoltaics. Chemical Physics Reviews, 1(1), Article 011302. https://doi.org/10.1063/5.0025748[details]
Marino, E., Keller, A. W., An, D., Van Dongen, S., Kodger, T. E., MacArthur, K. E., Heggen, M., Kagan, C. R., Murray, C. B., & Schall, P. (2020). Favoring the Growth of High-Quality, Three-Dimensional Supercrystals of Nanocrystals. Journal of Physical Chemistry C, 124(20), 11256-11264. https://doi.org/10.1021/acs.jpcc.0c02805[details]
Marino, E., Sciortino, A., Berkhout, A., MacArthur, K. E., Heggen, M., Gregorkiewicz, T., Kodger, T. E., Capretti, A., Murray, C. B., Koenderink, A. F., Messina, F., & Schall, P. (2020). Simultaneous photonic and excitonic coupling in spherical quantum dot supercrystals. ACS Nano, 14(10), 13806-13815. https://doi.org/10.1021/acsnano.0c06188[details]
Tang, Y., Lesage, A., & Schall, P. (2020). CsPbI3nanocrystal films: Towards higher stability and efficiency. Journal of Materials Chemistry C, 8(48), 17139-17156. https://doi.org/10.1039/d0tc04475j[details]
van der Gon, D. D., Timmerman, D., Matsude, Y., Ichikawa, S., Ashida, M., Schall, P., & Fujiwara, Y. (2020). Size dependence of quantum efficiency of red emission from GaN:Eu structures for application in micro-LEDs. Optics Letters, 45(14), 3973-3976. https://doi.org/10.1364/OL.397848[details]
2019
Long, A. A., Denisov, D. V., Schall, P., Hufnagel, T. C., Gu, X., Wright, W. J., & Dahmen, K. A. (2019). From critical behavior to catastrophic runaways: comparing sheared granular materials with bulk metallic glasses. Granular Matter, 21(4), Article 99. https://doi.org/10.1007/s10035-019-0946-y[details]
Marino, E., Balazs, D. M., Crisp, R. W., Hermida-Merino, D., Loi, M. A., Kodger, T. E., & Schall, P. (2019). Controlling Superstructure-Property Relationships via Critical Casimir Assembly of Quantum Dots. Journal of Physical Chemistry C, 123(22), 13451-13457. https://doi.org/10.1021/acs.jpcc.9b02033[details]
Van Dam, B., Bruhn, B., Kondapaneni, I., Dohnal, G., Wilkie, A., Křivánek, J., Valenta, J., Mudde, Y. D., Schall, P., & Dohnalová, K. (2019). Quantum yield bias in materials with lower absorptance. Physical Review Applied, 12(2), Article 024022. https://doi.org/10.1103/PhysRevApplied.12.024022[details]
Van Loenen, S. Z., Kodger, T. E., Padston, E. A., Nawar, S., Schall, P., & Spaepen, F. (2019). Measurement of the stiffness of hard-sphere colloidal crystal-liquid interfaces. Physical Review Materials, 3(8), Article 085605. https://doi.org/10.1103/PhysRevMaterials.3.085605[details]
Dang, M. T., Zargar, R., Bonn, D., Zaccone, A., & Schall, P. (2018). Nonequilibrium free energy of colloidal glasses under shear. Journal of Physics D: Applied Physics, 51(32), Article 324002. https://doi.org/10.1088/1361-6463/aad03a[details]
Hassani, M., Zirdehi, E. M., Kok, K., Schall, P., Fuchs, M., & Varnik, F. (2018). Long-range strain correlations in 3D quiescent glass forming liquids. EPL, 124(1), Article 18003. https://doi.org/10.1209/0295-5075/124/18003[details]
Marino, E., Kodger, T. E., Wegdam, G. H., & Schall, P. (2018). Revealing Driving Forces in Quantum Dot Supercrystal Assembly. Advanced materials, 30(43), Article 1803433. https://doi.org/10.1002/adma.201803433[details]
Nguyen, V. D., Schoemaker, F. C., Blokhuis, E. M., & Schall, P. (2018). Measurement of the Curvature-Dependent Surface Tension in Nucleating Colloidal Liquids. Physical Review Letters, 121(24), Article 246102. https://doi.org/10.1103/PhysRevLett.121.246102[details]
Potenza, M. A. C., Veen, S. J., Schall, P., & Wegdam, G. H. (2018). Nucleation of weakly attractive aggregates in microgravity. Europhysics Letters, 124(2), Article 28002. https://doi.org/10.1209/0295-5075/124/28002[details]
2017
Bruhn, B., Brenny, B. J. M., Dekker, S., Doğan, I., Schall, P., & Dohnalová, K. (2017). Multi-chromatic silicon nanocrystals. Light: Science & Applications, 6, Article e17007. https://doi.org/10.1038/lsa.2017.7[details]
Denisov, D. V., Lörincz, K. A., Wright, W. J., Hufnagel, T. C., Nawano, A., Gu, X., Uhl, J. T., Dahmen, K. A., & Schall, P. (2017). Universal slip dynamics in metallic glasses and granular matter - linking frictional weakening with inertial effects. Scientific Reports, 7, Article 43376. https://doi.org/10.1038/srep43376[details]
Ghosh, A., Budrikis, Z., Chikkadi, V., Sellerio, A. L., Zapperi, S., & Schall, P. (2017). Direct Observation of Percolation in the Yielding Transition of Colloidal Glasses. Physical Review Letters, 118(14), Article 148001. https://doi.org/10.1103/PhysRevLett.118.148001[details]
Miedema, D. M., Kushwaha, V. S., Denisov, D. V., Acar, S., Nienhuis, B., Peterman, E. J. G., & Schall, P. (2017). Correlation imaging reveals specific crowding dynamics of kinesin motor proteins. Physical Review X, 7(4), Article 041037. https://doi.org/10.1103/PhysRevX.7.041037[details]
Newton, A. C., Nguyen, T. A., Veen, S. J., Kraft, D. J., Schall, P., & Bolhuis, P. G. (2017). Modelling critical Casimir force induced self-assembly experiments on patchy colloidal dumbbells. Soft Matter, 13(28), 4903-4915. https://doi.org/10.1039/c7sm00668c[details]
Nguyen, T. A., Newton, A., Kraft, D. J., Bolhuis, P. G., & Schall, P. (2017). Tuning patchy bonds induced by critical Casimir forces. Materials, 10(11), Article 1265. https://doi.org/10.3390/ma10111265[details]
Nguyen, T. A., Newton, A., Veen, S. J., Kraft, D. J., Bolhuis, P. G., & Schall, P. (2017). Switching Colloidal Superstructures by Critical Casimir Forces. Advanced materials, 29(34), Article 1700819. https://doi.org/10.1002/adma.201700819[details]
Sprakel, J., Zaccone, A., Spaepen, F., Schall, P., & Weitz, D. A. (2017). Direct Observation of Entropic Stabilization of bcc Crystals Near Melting. Physical Review Letters, 118(8), Article 088003. https://doi.org/10.1103/PhysRevLett.118.088003[details]
Stuij, S. G., Labbé-Laurent, M., Kodger, T. E., Maciołek, A., & Schall, P. (2017). Critical Casimir interactions between colloids around the critical point of binary solvents. Soft Matter, 13(31), 5233-5249. https://doi.org/10.1039/c7sm00599g[details]
van Dam, B., Nie, H., Ju, B., Marino, E., Paulusse, J. M. J., Schall, P., Li, M., & Dohnalová, K. (2017). Excitation-Dependent Photoluminescence from Single-Carbon Dots. Small, 13(48), Article 1702098. Advance online publication. https://doi.org/10.1002/smll.201702098[details]
2016
Bruhn, B., Limpens, R., Chung, N. X., Schall, P., & Gregorkiewicz, T. (2016). Spectroscopy of carrier multiplication in nanocrystals. Scientific Reports, 6, Article 20538. https://doi.org/10.1038/srep20538[details]
Dang, M. T., Denisov, D., Struth, B., Zaccone, A., & Schall, P. (2016). Reversibility and hysteresis of the sharp yielding transition of a colloidal glass under oscillatory shear. European Physical Journal E, 39(4), Article 44. https://doi.org/10.1140/epje/i2016-16044-3[details]
Denisov, D. V., Lörincz, K. A., Uhl, J. T., Dahmen, K. A., & Schall, P. (2016). Universality of slip avalanches in flowing granular matter. Nature Communications, 7, Article 10641. https://doi.org/10.1038/ncomms10641[details]
Lin, N. Y. C., Bierbaum, M., Schall, P., Sethna, J. P., & Cohen, I. (2016). Measuring nonlinear stresses generated by defects in 3D colloidal crystals. Nature Materials, 15(11), 1172-1176. https://doi.org/10.1038/nmat4715[details]
Marino, E., Kodger, T. E., Hove, J. B. T., Velders, A. H., & Schall, P. (2016). Assembling quantum dots via critical Casimir forces. Solar Energy Materials and Solar Cells, 158(2), 154-159. https://doi.org/10.1016/j.solmat.2016.01.016[details]
Nguyen, V. D., Dang, M. T., Nguyen, T. A., & Schall, P. (2016). Critical Casimir forces for colloidal assembly. Journal of Physics-Condensed Matter, 28(4), Article 043001. https://doi.org/10.1088/0953-8984/28/4/043001[details]
Sciortino, A., Marino, E., Van Dam, B., Schall, P., Cannas, M., & Messina, F. (2016). Solvatochromism Unravels the Emission Mechanism of Carbon Nanodots. The Journal of Physical Chemistry Letters, 7(17), 3419-3423. https://doi.org/10.1021/acs.jpclett.6b01590[details]
Westermeier, F., Pennicard, D., Hirsemann, H., Wagner, U. H., Rau, C., Graafsma, H., Schall, P., Lettinga, M. P., & Struth, B. (2016). Connecting structure, dynamics and viscosity in sheared soft colloidal liquids: a medley of anisotropic fluctuations. Soft Matter, 12(1), 171-180. Advance online publication. https://doi.org/10.1039/c5sm01707f[details]
2015
Amann, C. P., Denisov, D., Dang, M. T., Struth, B., Schall, P., & Fuchs, M. (2015). Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory. Journal of Chemical Physics, 143(3), Article 034505. https://doi.org/10.1063/1.4926932[details]
Chikkadi, V., Woldhuis, E., van Hecke, M., & Schall, P. (2015). Correlations of strain and plasticity in a flowing foam. Europhysics Letters, 112(3), Article 36004. https://doi.org/10.1209/0295-5075/112/36004[details]
Denisov, D. V., Dang, M. T., Struth, B., Zaccone, A., Wegdam, G. H., & Schall, P. (2015). Sharp symmetry-change marks the mechanical failure transition of glasses. Scientific Reports, 5, Article 14359. https://doi.org/10.1038/srep14359[details]
Denisov, D. V., Miedema, D. M., Nienhuis, B., & Schall, P. (2015). Totally asymmetric simple exclusion process simulations of molecular motor transport on random networks with asymmetric exit rates. Physical Review E, 92(5), Article 052714. https://doi.org/10.1103/PhysRevE.92.052714[details]
Uhl, J. T., Pathak, S., Schorlemmer, D., Liu, X., Swindeman, R., Brinkman, B. A. W., LeBlanc, M., Tsekenis, G., Friedman, N., Behringer, R., Denisov, D., Schall, P., Gu, X., Wright, W. J., Hufnagel, T., Jennings, A., Greer, J. R., Liaw, P. K., Becker, T., ... Dahmen, K. A. (2015). Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes. Scientific Reports, 5, Article 16493. https://doi.org/10.1038/srep16493[details]
Woldhuis, E., Chikkadi, V., van Deen, M. S., Schall, P., & van Hecke, M. (2015). Fluctuations in flows near jamming. Soft Matter, 11(35), 7024-7031. https://doi.org/10.1039/c5sm01592h[details]
Chikkadi, V., Miedema, D. M., Dang, M. T., Nienhuis, B., & Schall, P. (2014). Shear banding of colloidal glasses: Observation of a dynamic first order transition. Physical Review Letters, 113(20), 208301. https://doi.org/10.1103/PhysRevLett.113.208301[details]
Miedema, D. M., de Wijn, A. S., & Schall, P. (2014). Criterion for condensation in kinetically constrained one-dimensional transport models. Physical Review E, 89(6), 062812. https://doi.org/10.1103/PhysRevE.89.062812[details]
Potenza, M. A. C., Manca, A., Veen, S. J., Weber, B., Mazzoni, S., Schall, P., & Wegdam, G. H. (2014). Dynamics of colloidal aggregation in microgravity by critical Casimir forces. Europhysics Letters, 106(6), 68005. https://doi.org/10.1209/0295-5075/106/68005[details]
Rahmani, Y., Koopman, R., Denisov, D., & Schall, P. (2014). Visualizing the strain evolution during the indentation of colloidal glasses. Physical Review E, 89(1), 012304. https://doi.org/10.1103/PhysRevE.89.012304[details]
Varnik, F., Mandal, S., Chikkadi, V., Denisov, D., Olsson, P., Vågberg, D., Raabe, D., & Schall, P. (2014). Correlations of plasticity in sheared glasses. Physical Review E, 89(4), 040301(R). https://doi.org/10.1103/PhysRevE.89.040301[details]
Zaccone, A., Schall, P., & Terentjev, E. M. (2014). Microscopic origin of nonlinear non-affine deformation in metallic glasses. Physical Review B, 90(14), Article 140203(R). https://doi.org/10.1103/PhysRevB.90.140203[details]
Dang, M. T., Vila Verde, A. C., Nguyen, V. D., Bolhuis, P. G., & Schall, P. (2013). Temperature-sensitive colloidal phase behavior induced by critical Casimir forces. Journal of Chemical Physics, 139(9), 094903. https://doi.org/10.1063/1.4819896[details]
Mazzoni, S., Potenza, M. A. C., Alaimo, M. D., Veen, S. J., Dielissen, M., Leussink, E., Dewandel, J. L., Minster, O., Kufner, E., Wegdam, G., & Schall, P. (2013). SODI-COLLOID: a combination of static and dynamic light scattering on board the International Space Station. Review of Scientific Instruments, 84, 043704. https://doi.org/10.1063/1.4801852[details]
Shelke, P. B., Nguyen, V. D., Limaye, A. V., & Schall, P. (2013). Controlling Colloidal Morphologies by Critical Casimir Forces. Advanced materials, 25(10), 1499-1503. https://doi.org/10.1002/adma.201204458[details]
Zargar, R., Nienhuis, B., Schall, P., & Bonn, D. (2013). Direct Measurement of the Free Energy of Aging Hard Sphere Colloidal Glasses. Physical Review Letters, 110(25), 258301. https://doi.org/10.1103/PhysRevLett.110.258301[details]
van der Vaart, K., Depypere, F., De Graef, V., Schall, P., Fall, A., Bonn, D., & Dewettinck, K. (2013). Dark chocolate’s compositional effects revealed by oscillatory rheology. European Food research and Technology, 236(6), 931-942. https://doi.org/10.1007/s00217-013-1949-2[details]
van der Vaart, K., Rahmani, Y., Zargar, R., Bonn, D., & Schall, P. (2013). Rheology of concentrated soft and hard-sphere suspensions. Journal of Rheology, 57(4), 1195-1209. https://doi.org/10.1122/1.4808054[details]
Rahmani, Y., van der Vaart, K., van Dam, B., Hu, Z., Chikkadi, V., & Schall, P. (2012). Dynamic heterogeneity in hard and soft sphere colloidal glasses. Soft Matter, 8, 4264-4270. https://doi.org/10.1039/c2sm25267h[details]
Veen, S. J., Antoniuk, O., Weber, B., Potenza, M. A. C., Mazzoni, S., Schall, P., & Wegdam, G. H. (2012). Colloidal aggregation in microgravity by critical Casimir forces. Physical Review Letters, 109(24), Article 248302. https://doi.org/10.1103/PhysRevLett.109.248302[details]
de Wijn, A. S., Miedema, D. M., Nienhuis, B., & Schall, P. (2012). Criticality in dynamic arrest: correspondence between glasses and traffic. Physical Review Letters, 109, 228001. https://doi.org/10.1103/PhysRevLett.109.228001[details]
2011
Chikkadi, V., Wegdam, G. H., Bonn, D., Nienhuis, B., & Schall, P. (2011). Long-range strain correlations in sheared colloidal glasses. Physical Review Letters, 107(19). https://doi.org/10.1103/PhysRevLett.107.198303[details]
Ghosh, A., Chikkadi, V., Schall, P., & Bonn, D. (2011). Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass. Physical Review Letters, 107(18). https://doi.org/10.1103/PhysRevLett.107.188303[details]
Ghosh, A., Mari, R., Chikkadi, V., Schall, P., Maggs, A. C., & Bonn, D. (2011). Low-energy modes and Debye behavior in a colloidal crystal. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 390(18-19), 3061-3068. https://doi.org/10.1016/j.physa.2011.02.051[details]
Nguyen, D., Triet, D., Weber, B., Hu, Z., & Schall, P. (2011). Visualizing the structural solid-liquid transition at colloidal crystal-fluid interfaces. Advanced materials, 23, 2716-2720. https://doi.org/10.1002/adma.201004599[details]
Nguyen, V. D., Hu, Z., & Schall, P. (2011). Single crystal growth and anisotropic crystal-fluid interface tension in soft colloidal systems. Physical Review E, 84. https://doi.org/10.1103/PhysRevE.84.011607[details]
Ghosh, A., Mari, R., Chikkadi, V., Schall, P., Kurchan, J., & Bonn, D. (2010). Density of states of colloidal glasses and supercooled liquids. Soft Matter, 6(13), 3082-3090. https://doi.org/10.1039/c0sm00265h[details]
Lőrincz, K. A., & Schall, P. (2010). Visualization of displacement fields in a sheared granular system. Soft Matter, 6(13), 3044-3049. https://doi.org/10.1039/b926817k[details]
Bonn, D., Otwinowski, J., Sacanna, S., Guo, H., Wegdam, G., & Schall, P. (2009). Direct observation of colloidal aggregation by critical Casimir forces. Physical Review Letters, 103(15), 156101. https://doi.org/10.1103/PhysRevLett.103.156101[details]
Mäder, R., Widmer, R., Gröning, P., Deloudi, S., Steurer, W., Heggen, M., Schall, P., Feuerbacher, M., & Gröning, O. (2009). High-resolution scanning tunneling microscopy investigation of the (12110) and (10000) two-fold symmetric d-Al-Ni-Co quasicrystalline surfaces. Physical Review B, 80(3), 035433. https://doi.org/10.1103/PhysRevB.80.035433[details]
Guo, H., Narayanan, T., Sztuchi, M., Schall, P., & Wegdam, G. H. (2008). Reversible phase transition of colloids in a binary liquid solvent. Physical Review Letters, 100(18), 188303. https://doi.org/10.1103/PhysRevLett.100.188303[details]
2011
Veen, S., Wegdam, G., & Schall, P. (2011). Colloïdale aggregatie en kristallisatie in de ruimte. Nederlands Tijdschrift voor Natuurkunde, 77(2), 46-49. [details]
2017
Schall, P. (2017). Aggregation of nanoparticles. (Patent No. WO 2017/109123).
2016
Dohnalová, K., Bruhn, B., Brenny, B. J. M., Dekker, S., & Schall, P. (2016). White emitting silicon nanocrystals – blue, green and red color centers. Poster session presented at E-MRS Spring 2016.
Schall, P. (2016). Critical Casimir forces: new solvent fluctuation forces for nanoassembly. Abstract from CMD 26, Groningen, Netherlands.
Schall, P. (2016). Nonequilibrium Phase Transitions in Soft Material Rheology. Abstract from Gordon Research Conference, Ventura, California, United States.
2013
Dang, M. T., Zargar, R., Bonn, D., & Schall, P. (2013). Free energy transition of sheared colloidal glasses. Bulletin of the American Physical Society, 58.
Spreker
van Dam, B. (speaker), Dohnalová, K. (speaker), Nie, H. (speaker), Bo, J. (speaker), Zhihe, L. (speaker), Marino, E. (speaker), Paulusse, J. M. J. (speaker) & Schall, P. (speaker) (2-5-2016). Multi-color emission from single carbon dots, E-MRS Spring 2016.
2017
Newton, A. C. (2017). Self-assembly via anisotropic interactions: Modeling association kinetics of patchy particle systems and self-assembly induced by critical Casimir forces. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Poonia, D., Siebbeles, L. D. A. & Schall, P. (5-4-2023). Data about: Photogeneration, relaxation and many-body effects of excitons and charge carriers in MoS₂, WS₂, and the Mo₀.₆W₀.₄S₂ alloy, probed by transient optical absorption spectroscopy.. 4TU.ResearchData. https://doi.org/10.4121/38ee266d-e313-42eb-a654-4c0b56cb2c33.v1
Schyck, S., Meijer, J.-M., Baldauf, L., Schall, P., Petukhov, A. V. & Rossi, L. (2022). Data for "Self-assembly of colloidal superballs under spherical confinement of a drying droplet". 4TU.ResearchData. https://doi.org/10.4121/19122308
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.