I am an assistant professor in Environmental Chemistry at the Department of Ecosystem & Landscape Dynamics (ELD) at the Institute for Biodiversity and Ecosystem Dynamics (IBED). Previously I worked as a Researcher at Stockholm University (Sweden) and as a Postdoc at the University of Vienna (Austria). I studied chemistry and obtained my PhD from ETH Zurich (Switzerland).
My research interests centre around assessing the environmental fate of emerging chemical contaminants. I am particularly interested in understanding how the fundamental physical and chemical properties of a contaminant drive its transformation and transport behaviour in aquatic and terrestrial environments and how we can utilise this understanding to build models for predicting contaminant fate and concentrations. I have a strong expertise in particulate contaminants, such as engineered nanomaterials, nano- and microplastics and microfibers. Additionally, I am working on (persistent) organic contaminants, such as PFAS and (psycho)pharmaceuticals, as well as emerging contaminants in circular systems (such as wastewater reuse). I very much enjoy working in interdisciplinary teams and I am convinced that addressing potential risks and designing effective mitigation strategies or regulations for emerging contaminants requires joint forces from different disciplines.
In our projects we combine modelling approaches with laboratory-based studies on contaminant fate processes (e.g. degradation/transformation, aggregation, sedimentation). We also work towards improving analytical methods for identifying emerging contaminants in different environmental matrices.
More information on ongoing projects
µPLANET – Microplatic Long-range transport Assessment aNd Estimation Tools: together with Marianne Seijo we are developing a global-scale multimedia fate and transport model for microplastics and their additives. Our model is based on the Full Multi, an open-source framework for modelling the transport and fate of nano- and microplastics in aquatic systems, developed previously with Prado Domercq and Matthew MacLeod from Stockholm University (find the code on GitHub: Full Multi GitHub repository).
We are also contributing to developing an open-source unit world multimedia modeling platform for microplastics in the environment in the UTOPIA project and to better understanding and modelling micro- and nanoplastic fragmentation in the FRAGMENT-MNP project.
META – Citizen Science for Microfiber Detection: together with Lies Jacobs, Bernou Boven, Cameron Brick and interested Dutch citizens we are investigating the factors that drive the release of synthetic microfibers—one of the most frequently detected forms of microplastics in the environment—from washing of textiles in real households. If you are interested in participating, check out our website for more information: https://www.meta-citizenscience.nl/.